УДК 620.193

КОРРОЗИОННАЯ УСТОЙЧИВОСТЬ СПЛАВОВ СЕРИИ АМАГ В КИСЛЫХ СРЕДАХ

© О.В. Попова

Аннотация. Изучена скорость коррозии аморфных металлических лент с помощью гравиметрических испытаний в растворах HCl и среде NACE в отсутствие и при наличии H₂S и ингибитора AMДOP ИК-3, их поведение посредством потенциостатических поляризационных измерений и импедансной спектроскопии. Оценено влияние состава коррозионной среды и ингибитора коррозии на скорость коррозии аморфных металлических сплавов.

Ключевые слова: ингибитор; скорость коррозии; импеданс; аморфный металлический сплав

Аморфные металлические сплавы получили широкое применение в различных сферах в силу их особых магнитных, прочностных свойств, а также их коррозионной устойчивости [1–3]. Отсутствие дислокаций в аморфных сплавах приводит к тому, что они превосходят наиболее прочные легированные стали, а из-за высокой твердости сильно увеличивается износо- и коррозионная стойкость. Поверхность аморфных сплавов на первых этапах коррозии покрыта оксидной пленкой, что препятствует распространению коррозии, то есть при обычных условиях они уже находятся в пассивном состоянии по отношению к коррозионным процессам [4–5].

Цель работы заключается в изучении коррозионной устойчивости сплавов серии АМАГ в солянокислых средах и среде NACE.

МЕТОДИКА ЭКСПЕРИМЕНТА

Изучены аморфные ленты прямоугольной формы АМАГ-180 и АМАГ-200 размером $50(\pm 6) \times 3,55 \times 0,02$ мм и $50(\pm 6) \times 3,35 \times 0,02$ мм соответственно, которые обезжиривались ацетоном и взвешивались на аналитических весах с точностью до 10^{-4} г. Коррозионные испытания проводились в герметичных сосудах. Время экспозиции (τ , ч) составляло 24 часа. Затем образцы промывали дистиллированной водой, высушивали и определяли потери массы образцов (Δm , Γ) [6].

Скорость коррозии K, г/м²·ч из трех параллельных опытов рассчитывали по формуле:

$$K=\frac{\Delta m}{S\tau},$$

где *S* – площадь поверхности образца, м².

Поляризационные измерения проведены на неподвижном электроде в потенциостатическом режиме с использованием потенциостата Solartron 1285. Электрод для электрохимических измерений с рабочей поверхностью 0,5 см², армированный в оправку из эпоксидной смолы ЭД-5 с отвердителем ПЭПА, перед экспериментом обезжиривался ацетоном. В исследованиях была использована трехэлектродная электрохимическая ячейка из стекла «Пирекс» с разделенными катодным и анодным пространствами. Потенциалы пересчитаны по н.в.ш.

Импедансные измерения осуществлялись в трехэлектродной электрохимической ячейке из стекла «Пирекс» на плоском электроде, изготовленном из аморфного сплава АМАГ-183 или АМАГ-186 (рис. 1).

Исследования проводились при температуре 20 ± 2 °C посредством анализатора частотного отклика Solartron 1255 и потенциостата Solartron 1287 (Великобритания). Частота варьировалась от 10000 до 0,05 Гц, амплитуда напряжения 10 мВ. Электрод выдерживали в растворе 900 секунд для установления стационарного потенциала.

Рис. 1. Трехэлектродная ячейка из стекла «Пирекс» с разделенным анодным и катодным пространствами. 1 – корпус; 2 – рабочий электрод; 3 – вспомогательный платиновый электрод; 4 – электрод сравнения; 5 – электролитический ключ; 6 – кран со шлифом

Годографы обрабатывались с помощью программы ZView 3.0a, которая позволяет работать с эквивалентными схемами, содержащими до 20 различных элементов с помощью поиска коэффициентов сложной функции симплекс-методом. Значения элементов эквивалентной схемы, полученные в 3 опытах, усреднялись.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Основным элементом, входящим в состав аморфных сплавов АМАГ, является Со (для АМАГ-200 – Fe). В качестве легирующих добавок АМАГ содержит Ni, Si, Mn, B, Cr, Nb и Cu (табл. 1).

Для образца АМАГ-180 в фоновом растворе NACE скорость коррозии составила 0,1550 г/м²·ч. Добавка 100 мг/л H_2S увеличивает скорость коррозии в 1,7 раза. Добавка 50 мг/л ингибитора АМДОР ИК-3, напротив, снижает скорость коррозии в 1,1 раза. При одновременном использовании добавки 100 мг/л H_2S и 50 мг/л АМДОР ИК-3 скорость коррозии снижается существеннее – в 1,3 раза (табл. 2).

В фоновом растворе 0,01 М HCl скорость коррозии несколько выше, чем в растворе NACE, и составляет 0,1927 г/м²·ч. Добавка 100 мг/л H₂S стимулирует скорость коррозии в 6,6 раза. Ингибитор АМДОР ИК-3 практически не оказывает действия на скорость коррозии. Но при совместном действии 100 мг/л H₂S и 50 мг/л АМДОР ИК-3 наблюдается снижение скорости коррозии в 4 раза.

В 0,1 М растворе HCl скорость коррозии имеет промежуточное значение по сравнению с раствором NACE и 0,01 М HCl и достигает 0,1648 г/м²·ч. 100 мг/л H₂S вновь ускоряет коррозию в 3,9 раза. Добавка 50 мг/л AMДOP ИК-3 замедляет коррозию в 1,6 раза. Совместное действие 100 мг/л H₂S и 50 мг/л AMДOP ИК-3 способствует еще большему снижению скорости коррозии – в 2,5 раза по сравнению с фоновым раствором.

Таблица 1

Тип сплава	Co	Fe	Ni	Si	Mn	В	Cr	Nb	Cu
АМАГ-180	78,65	4,03	4,73	7,22	1,88	2	1,49	_	_
АМАГ-183	82,69	2,21	_	7,77	4,19	2	1,14	_	_
АМАГ-186	85,41	2,27	_	5,15	4,07	2	1,1		_
АМАГ-200	-	80,22	_	8,25	_	-	_	10,09	1,44

Элементный состав аморфных сплавов серии АМАГ (%)

Фоновый	Побарка	Средняя скорость	
раствор	добавка	коррозии, г/м ² ·ч	
NACE	_	0,1550	
	100 мг/л H ₂ S	0,2584	
	50 мг/л АМДОР ИК-3	0,1403	
	100 мг/л H_2S + 50 мг/л АМДОР ИК-3	0,1242	
	-	0,1927	
0.01 M HCl	100 мг/л H ₂ S	1,2626	
0,01 WI HCI	50 мг/л АМДОР ИК-3	0,1903	
	100 мг/л H_2S + 50 мг/л АМДОР ИК-3	0,0481	
0,1 M HCl	_	0,1648	
	100 мг/л H ₂ S	0,6343	
	50 мг/л АМДОР ИК-3	0,1065	
	100 мг/л H_2S + 50 мг/л АМДОР ИК-3	0,0673	

Скорость коррозии аморфных лент АМАГ-180

Таким образом, наименьшая скорость коррозии для образца АМАГ-180 наблюдается в 0,01 М HCl с добавкой 100 мг/л H_2S и 50 мг/л АМ-ДОР ИК-3, а наибольшая – в 0,01 М HCl + 100 мг/л H_2S . Добавка 100 мг/л H_2S способствует увеличению скорости коррозии в несколько раз. Во всех случаях введение ингибитора АМДОР ИК-3 способствует снижению скорости коррозии. При добавлении в фоновые растворы 100 мг/л H_2S и 50 мг/л АМДОР ИК-3 наблюдаются синергизм и значительное снижение скорости коррозии.

Испытания, проведенные при тех же условиях для образца АМАГ-200 (табл. 3), показывают, что в растворе NACE добавка 100 мг/л H₂S стимулирует коррозию в 2,3 раза. Ингибитор коррозии АМДОР ИК-3, наоборот, способствует снижению скорости коррозии в 1,2 раза. Синергетическое действие добавки 100 мг/л H₂S + 50 мг/л АМДОР ИК-3 тормозит коррозионный процесс в 3,4 раза.

Аналогичная тенденция наблюдается и в растворе 0,01 М HCl. Вновь 100 мг/л H₂S ускоряет коррозию в 1,6 раза, а добавка 50 мг/л ингибитора АМДОР ИК-3 замедляет коррозию в 3,1 раза. При одновременном использовании добавки 100 мг/л H₂S и 50 мг/л АМДОР ИК-3 скорость коррозии снижается сильнее – в 4,4 раза.

Фоновый раствор	Добавка	Средняя скорость коррозии, г/м ² ·ч	
	_	0,2228	
NACE	100 мг/л H ₂ S	0,5075	
NACE	50 мг/л АМДОР ИК-3	0,1922	
	100 мг/л H_2 S + 50 мг/л АМДОР ИК-3	0,0663	
	_	0,4675	
0.01 M HCl	100 мг/л H ₂ S	0,7349	
0,01 101 1101	50 мг/л АМДОР ИК-3	0,1420	
	100 мг/л H ₂ S + 50 мг/л АМДОР ИК-3	0,0995	
	_	0,8415	
0.1 M UC	100 мг/л H ₂ S	1,0144	
0,1 M HCI	50 мг/л АМДОР ИК-3	0,7527	
	100 мг/л H_2S + 50 мг/л АМДОР ИК-3	0,7424	

Скорость коррозии аморфных лент АМАГ-200

В растворе 0,1 М HCl для АМАГ-200 также наблюдается увеличение скорости коррозии в 1,2 раза при добавлении 100 мг/л H₂S. Добавка 50 мг/л АМДОР ИК-3 или 100 мг/л H₂S + 50 мг/л АМДОР ИК-3 замедляет коррозию примерно в 1,1 раза, но в большей мере это проявляется во втором случае.

Таким образом, минимальная скорость коррозии в изученном ряду для АМАГ-200 наблюдается в среде NACE с добавкой 100 мг/л H₂S и 50 мг/л АМДОР ИК-3, а наибольшая – в 0,1М HCl с добавкой 100 мг/л H₂S. Как и для АМАГ-180, добавка сероводорода увеличивает скорость коррозии во всех исследованных средах, а введение ингибитора АМДОР ИК-3 способствует снижению скорости коррозии.

Ход поляризационных кривых, полученных на образце АМАГ-183 (основа – кобальт), имеет характерный вид для материалов из железа и его сплавов (рис. 2). Область предельного тока отсутствует, металл растворяется в активном состоянии.

Потенциал коррозии ($E_{\text{кор}}$) в среде NACE для АМАГ-183 отрицательнее такового в солянокислых средах, что связано с различной рН этих сред (табл. 4). Для АМАГ-186 наблюдается аналогичная тенденция. $E_{\text{кор}}$ АМАГ-186 в 0,01 М HCl оказывается несколько положительнее, чем для АМАГ-183 в том же растворе, что коррелирует увеличением содер-

Попова О.В. Коррозионная устойчивость сплавов серии АМАГ в кислых средах

Рис. 2. Потенциостатические поляризационные кривые в растворе 0,01 М HCl (1– аморфного сплава АМАГ-183, 2– АМАГ-186)

Расчеты электрохимических показателей коррозии аморфных сплавов

Фоновый раствор	Образец	E_{kop} , B	b_k, B	$b_{\mathrm{a}},\mathrm{B}$	$i_{\text{кор}}, \text{A/m}^2$
NACE	АМАГ-183	-0,28	0,20	0,070	0,250
	АМАГ-186	-0,22	0,20	0,065	0,250
0,01 M HCl	АМАГ-183	-0,20	0,15	0,060	0,178
	АМАГ-186	-0,17	0,13	0,050	0,100
0,1 M HCl	АМАГ-183	-0,18	0,14	0,070	0,200
	AMAΓ-186	-0,13	0,10	0,060	0,196

жания кобальта в материале. Потенциалы коррозии в 0,1 М растворе HCl для обоих образцов смещаются в анодную область по отношению к по-

тенциалам в растворе 0,01 M HCl, причем потенциал для АМАГ-186 оказывается несколько положительнее, чем для АМАГ-183.

Величины Тафелевых коэффициентов для катодной (b_k) и анодной (b_a) поляризационных кривых близки для сплавов АМАГ-183 и АМАГ-186 в растворах 0,01 М НС1 и 0,1 М НС1. При этом наблюдается небольшое уменьшение b_k и b_a для АМАГ-186 по сравнению с АМАГ-183, что говорит о стимуляции катодного и анодного процессов, что можно объяснить изменением количественного состава материала, а именно, увеличением содержания кобальта в АМАГ-186.

Величина тока коррозии ($i_{\text{кор}}$) для АМАГ-183 и АМАГ-186 в среде NACE совпадает, но существенно выше, чем для этих образцов в солянокислых средах. Ток коррозии в 0,1 М растворе HC1 для образцов оказывается выше, чем в растворе 0,01 М HC1, что связано с увеличением концентрации частиц H₃O⁺, являющихся окислителем.

Годографы импеданса при потенциале коррозии в водных растворах для образцов серии АМАГ-183 (рис. 3) и АМАГ-186 (рис. 4) имеют вид полуокружностей, искаженных в низкочастотной области.

При снятии спектров электрохимического импеданса можно отметить, что для АМАГ-186 значение величины сопротивления раствора R_s примерно в 2 раза больше, чем для АМАГ-183 (табл. 5). Для обоих обра-

Рис. 3. Годографы импеданса в растворе 0,1 М НСІ на образце АМАГ-183

Попова О.В. Коррозионная устойчивость сплавов серии АМАГ в кислых средах

Рис. 4. Годографы импеданса в среде NACE на образце АМАГ-186

Параметр	0,01 M HCl		0,1 N	4 HCl	NACE		
	АМАГ-183	АМАГ-186	АМАГ-183	АМАГ-186	АМАГ-183	АМАГ-186	
R_s , OM·CM ²	35,6	69,2	17	1,3	55	38,3	
R_2 , OM·CM ²	$2,8 \cdot 10^{-5}$	$3,3.10^{-6}$	$4,2.10^{-5}$	$4,4.10^{-5}$	$5 \cdot 10^{-5}$	$7,6 \cdot 10^{-5}$	
$Z_d(R)$, OM·CM ²	3348	2013	1389	5259	4171	1593	
$Z_d(T)$, c	0,5	0,5	0,2	1,6	1,2	0,5	
$Z_d(P)$	0,5	0,5	0,4	0,6	0,5	0,5	
R_1 , OM·CM ²	3225	2115	2826	332,9	2606	8455	
$C_{\rm a}$ ·10 ⁵ , $\Phi/{\rm cm}^2$	1,5	1	0,9	2	1,9	2,8	
$R_{\rm a}$, Ом·см ²	118,2	321	46,7	177,6	111,2	36,5	
C_{dl} ·10 ⁵ , Φ/cm^2	1,7	1,2	0,8	6,4	1,8	3	

Электрохимические показатели коррозии аморфных сплавов

зцов наблюдаются весьма низкие значения величины R_2 , характеризующей сопротивление переноса заряда в катодном процессе. Сопротивление переноса заряда R_1 для исследуемых случаев на несколько порядков больше, чем R_2 , что указывает на преимущественно анодный контроль.

Импеданс Варбурга ($Z_d(R)$) для обоих образцов имеет один порядок и различается приблизительно в 1,5 раза.

В растворе 0,1 М HC1 на тех же образцах наблюдается существенное снижение величины сопротивления раствора R_s . Вновь R_2 имеет заниженные значения. Сопротивление переноса заряда в анодном процессе R_1 также на несколько порядков больше, чем R_2 , что указывает на преимущественно анодный контроль. Однако для образца АМАГ-186 снижается на порядок по отношению к АМАГ-183 и к значениям в растворе 0,01 М HC1. Значения величины потенциала Варбурга отличаются примерно в 5 раз. Величина емкости двойного электрического слоя имеет тот же порядок, что в растворе 0,01 М HC1, но для образца АМАГ-183 оказывается несколько заниженной.

Общие закономерности сохраняются и в NACE: анодный контроль, порядок величин потенциала Варбурга и емкости двойного электрического слоя. Следует отметить, что в наибольшей мере полученные значения в среде NACE сопоставимы с теми, которые наблюдались в растворе 0,01 HC1.

выводы

1. Скорость коррозии сплава АМАГ-200 (с большим содержанием железа) преимущественно выше, чем скорость коррозии образца АМАГ-180 (с большим содержанием кобальта) в средах NACE и 0,1 н HCl с добавками 100 мг/л H₂S или 50 мг/л АМДОР ИК-3 и без них.

2. Во всех случаях введение ингибитора АМДОР ИК-3 способствует снижению скорости коррозии, которое в наибольшей мере наблюдается в системах, содержащих сероводород.

3. Из электрохимических измерений следует, что величина b_a в среде HC1 и NACE для образцов АМАГ-183 и АМАГ-186 имеет близкие значения и составляет примерно 0,06–0,07 В. Величина b_k имеет более высокие значения в среде NACE по сравнению с солянокислыми растворами, что, вероятно, вызвано сменой механизма катодного процесса.

4. В средах с большей кислотность потенциал коррозии для АМАГ-183 и АМАГ-186 смещается в положительную область. Наибольшие значения токов коррозии наблюдаются в среде NACE по сравнению с солянокислыми средами, что также может быть объяснено сменой механизма катодного процесса.

5. Согласно результатам импедансных измерений при потенциале коррозии, для образцов АМАГ-183 и АМАГ-186 наблюдается анодный контроль в средах HC1 и NACE, повышение кислотности качественно не

меняет вид годографов, количественно – соответствующие параметры эквивалентной электрической схемы имеют одинаковый порядок.

Список литературы

- 1. *Судзуки К., Фудзимори Х., Хасимото К.* Аморфные металлы / под ред. Ц. Масумото. М.: Металлургия, 1987. 328 с.
- 2. *Зборщик А.М.* Новые материалы в металлургии. Донецк: ГВУЗ «ДонНТУ», 2008. 253 с.
- ТУ 14-123-149-2009. Лента быстрозакаленная из магнитомягких аморфных сплавов и магнитомягкого композиционного материала (нанокристаллического сплава). Аша: ОАО «АМЗ», 2009.
- 4. Молотилов Б.В., Грацианов Ю.А., Овчаров В.П., Прокошин А.Ф. Аморфные прецизионные сплавы // Металлургия: стали, сплавы, процессы: сб. тр. ЦНИИЧМ. М.: Металлургия, 1982. С. 174-184.
- 5. Золотухин И.В. Аморфные металлические материалы // Соросовский образовательный журнал. 1997. № 4. С. 73-78.
- 6. *Романов В.В.* Методы исследования коррозии металлов. М.: Металлургия, 1965. 280 с.

Поступила в редакцию 02.02.2018 г. Отрецензирована 06.03.2018 г. Принята в печать 05.04.2018 г.

Информация об авторе:

Попова Олеся Владимировна – магистрант по направлению подготовки «Химия». Тамбовский государственный университет им. Г.Р. Державина, г. Тамбов, Российская Федерация. E-mail: leseena68@gmail.com

CORROSION RESISTANCE ALLOYS SERIES AMAG IN ACIDIC MEDIA

Popova O.V., Master's Degree Student on Training Direction "Chemistry". Derzhavin Tambov State University, Tambov, Russian Federation. E-mail: leseena68@gmail.com

Abstract. The corrosion rate of amorphous metal tapes was studied by means of gravimetric tests in HCl solutions and in the NACE medium in the absence and presence of H_2S and the AMDOR IK-3 inhibitor, their behavior by potentiostatic polarization measurements and impedance spectroscopy. Estimated the effect of corrosion medium composition and corrosion inhibitor on the corrosion rate of amorphous metal alloys.

Keywords: inhibitor; corrosion rate; impedance; amorphous metal alloy

References

1. Sudzuki K., Fudzimori Kh., Khasimoto K. *Amorfnye metally* [Amorphous Metals]. Moscow, Metallurgy Publ., 1987, 328 p. (In Russian).

- 2. Zborshchik A.M. *Novye materialy v metallurgii* [New Materials in Metallurgy]. Donetsk, Donetsk National Technical University Publ., 2008, 253 p. (In Russian).
- 3. TU 14-123-149-2009. Lenta bystrozakalennaya iz magnitomyagkikh amorfnykh splavov i magnitomyagkogo kompozitsionnogo materiala (nanokristallicheskogo splava) [TU 14-123-149-2009. Fast-quenched tape of soft magnetic amorphous alloys and soft magnetic composite material (nanocrystalline alloy)]. Asha, Ashinsky Metallurgical Plant Publ., 2009. (In Russian).
- Molotilov B.V., Gratsianov Y.A., Ovcharov V.P., Prokoshin A.F. Amorfnye pretsizionnye splavy [Amorphous precision alloys]. Sbornik trudov Tsentral'nogo nauchno-issledovatel'skogo instituta chernoy metallurgii «Metallurgiya: stali, splavy, protsessy» [Collected Works of the I.P. Bardin Central Research Institute for Ferrous Metallurgy "Metallurgy: Steels, Alloys, Processes"]. Moscow, Metallurgy Publ., 1982, pp. 174-184. (In Russian).
- 5. Zolotukhin I.V. Amorfnye metallicheskie materialy [Amorphous metal materials]. *Sorosovskiy obrazovatel'nyy zhurnal Soros Educational Journal*, 1997, no. 4, pp. 73-78. (In Russian).
- 6. Romanov V.V. *Metody issledovaniya korrozii metallov* [Methods of Research of Corrosion of Metals]. Moscow, Metallurgy Publ., 1965, 280 p. (In Russian).

Received 2 February 2018 Reviewed 6 March 2018 Accepted for press 5 April 2018